On the Noncommutative Residue and the Heat Trace Expansion on Conic Manifolds
نویسنده
چکیده
Given a cone pseudodifferential operator P we give a full asymptotic expansion as t → 0 of the trace TrPe, where A is an elliptic cone differential operator for which the resolvent exists on a suitable region of the complex plane. Our expansion contains log t and new (log t) terms whose coefficients are given explicitly by means of residue traces. Cone operators are contained in some natural algebras of pseudodifferential operators on which unique trace functionals can be defined. As a consequence of our explicit heat trace expansion, we recover all these trace functionals.
منابع مشابه
Noncommutative Residues, Dixmier’s Trace, and Heat Trace Expansions on Manifolds with Boundary
For manifolds with boundary, we define an extension of Wodzicki’s noncommutative residue to boundary value problems in Boutet de Monvel’s calculus. We show that this residue can be recovered with the help of heat kernel expansions and explore its relation to Dixmier’s trace.
متن کاملNoncommutative Residue for Heisenberg Manifolds. I.
In this paper we construct a noncommutative residue for the Heisenberg calculus, that is, for the hypoelliptic calculus on Heisenberg man-ifolds, including on CR and contact manifolds. This noncommutative residue as the residual induced on operators of integer orders by the analytic extension of the usual trace to operators of non-integer orders and it agrees with the integral of the density de...
متن کاملTrace Expansions and the Noncommutative Residue for Manifolds with Boundary
For a pseudodifferential boundary operator A of order ν ∈ Z and class 0 (in the Boutet de Monvel calculus) on a compact n-dimensional manifold with boundary, we consider the function Tr(AB−s), where B is an auxiliary system formed of the Dirichlet realization of a second order strongly elliptic differential operator and an elliptic operator on the boundary. We prove that Tr(AB−s) has a meromorp...
متن کاملExotic Expansions and Pathological Properties of Ζ-functions on Conic Manifolds
We give a complete classification and present new exotic phenomena of the meromorphic structure of ζ-functions associated to general selfadjoint extensions of Laplace-type operators over conic manifolds. We show that the meromorphic extensions of these ζ-functions have, in general, countably many logarithmic branch cuts on the nonpositive real axis and unusual locations of poles with arbitraril...
متن کاملGEOMETRIZATION OF HEAT FLOW ON VOLUMETRICALLY ISOTHERMAL MANIFOLDS VIA THE RICCI FLOW
The present article serves the purpose of pursuing Geometrization of heat flow on volumetrically isothermal manifold by means of RF approach. In this article, we have analyzed the evolution of heat equation in a 3-dimensional smooth isothermal manifold bearing characteristics of Riemannian manifold and fundamental properties of thermodynamic systems. By making use of the notions of various curva...
متن کامل